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A stochastic theory is presented for nucleation and growth of clusters in a finite system. We 
consider a discrete cluster distribution for which the free energy and the equilibrium probability 
distribution are derived. The cluster growth and shrinkage occurs by the attachment/evaporation 
of free particles. The transition probabilities reflect that clusters of different sizes cannot evolve 
independently due to the limitation of the total particle number and the finite system size. 

Computer simulations demonstrate the time dependence of various significant properties of the 
system: e.g. cluster distribution, supersaturation, critical cluster size. We discuss three stages of the 
phase transition in finite systems: a short period of predominant nucleation, a period of growth of 
supercritical clusters and a period of Ostwald ripening. 

A Fokker-Planck equation for the mean cluster distribution is derived and solved by means of 
computer simulations. The evolution of the mean cluster distribution can be described by two time 
scales which are determined by simulation experiments. 

1. Introduction 

This paper deals with the description of nucleation and growth of clusters in 
a low supersaturated vapour. In contrast to the classical nucleation theory we 
consider a finite system with a limited total particle number. 

Earlier investigations on a description of the nucleation process’-3) presume 
an independent formation and growth of clusters. This assumption is valid only 
for infinite systems where the vapour state does not change due to the 
formation of clusters. In finite systems the limitation of the total particle 
number and the fixed system size lead to a depletion of the vapour. Therefore 
the formation and growth of different clusters is coupled by the vapour 
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pressure and we find a scenario of the phase transition where three stages can 
be distinguished. 

This scenario can be derived generally also from a deterministic description 
based on thermodynamic investigations”m6 ). Indeed a thermodynamic analysis 
of a heterogenous finite system7) allows the prediction of the critical and stable 
cluster sizes.“) and will p rovide us with information on critical thermodynamic 
constraints for the phase transitionlO). But a detailed investigation on nuclea- 
tion and growth of clusters in finite systems caused by fluctuations has been still 
in request. 

We propose a stochastic description for the formation of clusters which 
restricts itself to a mesoscopic time scale. That means a scale where the 
microscopic processes are not considered in detail but reflected by small 
changes of the macroscopic parameters of the system (e.g. pressure, tempera- 
ture). The cluster itself is described similar to the classical droplet model. That 
means it can be characterized by a macroscopic density and surface tension. 

In the considered case the simulation of the phase transition is started from 
an initial state of only free particles. The free energy of this state is much larger 
than that in the final equilibrium state; that means the system exists initially in 
a non-equilibrium state and will relax into the equilibrium state after crossing 
over an energy barrier. This nucleation barrier is known already from ther- 
modynamic investigations’,8,y) and separates the metastable and the stable 
state of the system. The cross-over of this barrier is an intrinsic stochastic 
process which can be explained only by consideration of the fluctuations in the 
system. In a deterministic sense undercritical clusters have to diminish again as 
will be shown in terms of a deterministic growth equation in section 5. 

2. Description of the cluster distribution 

2.1. Model of the finite system 

In the following we consider a closed and finite system with a fixed system 
volume V and a fixed total particle number N in the gaseous state: 

N = const., V= const. (2.1) 

As is known from experiments on condensation in a vapour’), in general a 
carrier gas is used to transport the latent heat which will be released during the 
condensation process. This carrier gas should be uncondensable for the given 
constraints. Therefore the total particle number is divided into the particle 
number of the carrier gas (NO) and the particle number of the condensable 
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vapour (N,,,) both being constant, 

N=N,+N,. (2.2) 

Due to interactions between the particles of the condensable vapour a number 
of particles is bound in clusters and a discrete distribution of clusters and free 
particles in the gas exists: 

N={N,,N* )..‘) N, )...) NN}. (2.3) 

N denotes the discrete cluster distribution where N, is the number of free 
particles of the condensable vapour (monomers), N2 the number of bound 
states with two particles (dimers) and so on. Because of the limited number of 
particles the following holds: 

N 

N,,, = c nN,, = const. 
n=l 

(2.4) 

n is the number of particles bound in the cluster, the number of clusters 
consisting of IZ particles is denoted by N,. For the maximum number of clusters 
from eq. (2.4) follows: 

06N,,SN,,,ln. (2.5) 

We can now discuss the two limiting cases: 
i) For N, = 0 we have isoenergetic conditions. The inner energy of the 

system should be constant because no condensation heat is transported to the 
background by means of the carrier gas. 

ii) If N, P N,,,, the latent heat of condensation will be completely brought 
back in a short time and we have isothermal conditions. 

We restrict ourselves here to the second case of the isothermal nucleation 
process. The influence of the carrier gas on the phase transition will be 
considered elsewhere. So we fix the thermodynamic constraints now as follows: 

N= N,,, =const., V=const., T=const., (2.6) 

with N now being the particle number of the condensable vapour. The 
thermodynamic constraints (2.6) are chosen is such a way that the pressure p0 
of a supposed perfect vapour consisting of free particles only is much larger 
than the equilibrium pressure p’(T) at the same temperature: 

p,, = Nk,T/V >p’(T) . (2.7) 
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This allows us to introduce the initial supersaturation of a vapour with only 
free particles by y, = pOIp’. It is an appropriate parameter to represent the 
thermodynamic constraints. We note here the existence of critical ther- 
modynamic conditions to form supercritical clusters in finite systems, e.g. a 
critical total particle number, a critical system size, a critical temperature and a 
critical initial supersaturation lo). 

2.2. Free energy of the cluster distribution 

We now derive the canonical partition function Z(T, V, N) for the system 
with the assumed discrete cluster distribution N (eq. (2.3.)). In general 
Z(T, V, IV) can be calculated by”) 

Z(T, V, N) = 1 exp{- $T H(q, . . . qN, PI . . *pN)] dq, ‘. '~PN . 
B 

WI 
(23) 

ff(q, *. . p,,,) is the Hamiltonian of the N-particle system, where q, are the 
space coordinates and p, are the momentum coordinates of the free and bound 
particles (n = 1, . . . , N). The integration is carried out for the subspace of the 
assumed particle configuration N: C(N) = C(N, . . . NN). 

Supposing an ideal mixture of the clusters and free particles we get from eq. 
(2.8) with the correct normalization’*) 

Z(T,V,N)= ii l ~=,~~exp(-~}dQ,--.dQ,dP,-.-dP,. (2.9) 

Q, and P,, are now the space coordinates and momentum coordinates of 
clusters of size n. H, is the Hamiltonian of a cluster with n particles and the 
mass m,: 

ff,, zz ” ~ +f, 
2% 

(2.10) 

f, denotes a potential contribution which depends only on the size n of a 
cluster. Because of the assumed ideal mixture no contributions arise from the 
interactions between clusters and monomers. 

The free energy of a certain cluster distribution is defined as usually: 

F(T,V,N,... NN) = -k, T In Z( T, V, N, . . . NN) . (2.11) 
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After integration of eq. (2.9) with respect to eq. (2.10) we get for the free 

energy”) 

F(T,V,N,*** NN) = 5 Nn[ f, + k,T(ln + Ai - I)}. 
n=l 

(2.12) 

A, = nl(2lrm,k,T)“* is the de Broglie wavelength. To determine the potential 
term f, we choose a first approximation similar to the theory of atomic nuclei 
which includes only volume and surface effects: 

f, = -An + Bn2’” . (2.13) 

The first term of eq. (2.13) corresponds to the binding energy in the cluster, 
but the second term to the surface energy. 

The constant A is the binding energy of a particle in the cluster. It can be 
estimated by the molar evaporation heat H,: A = HJN,. Another but quite 
equal expression for A was derived in comparison with thermodynamic re- 
sultslO): 

A=-k,Tlnp~A~. 
B 

(2.14) 

The surface energy is proportional to the surface area and the surface tension 
CJ. Assuming a spherical cluster it yields for the constant B ‘“): 

(2.15) 

cu is the particle density in the cluster. Due to the classical droplet model 
presumed here the surface tension (+ and the particle density are assumed to be 
constant. 

The ansatz (2.13) for f, is valid only for large clusters, where a real surface 
can be divided from the inner part of the cluster. On the other hand, it yields 

f,=O, for monomers , 
f2=-a, dimer binding energy . 

(2.16) 

The dimer binding energy has to be known from experiments. A possible form 
of f, in the range of small values of IZ which satisfies the conditions (2.16) is 
proposed as follows: 

f,=-%n(n-1). (2.17) 
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A Pad6 approximation as a possible interpolation of the expressions for af,lan 
in the range of small and large clusters was derived in ref. 13. 

The free energy (eq. 2.12) includes the contribution of the pressure p and 
the Gibbs free enthalpy: F = G - pV. For the pressure follows: 

k,T N 

p= v n=, - 2 N,,, 

while the Gibbs potential G is given by G = “g, p,,N,, with 

(2.18) 

(2.19) 

being the chemical potential of a cluster of size IZ. 

3. Kinetics of the phase transition in finite systems 

3.1. Kinetic assumptions and master equation 

Nucleation process means the formation of clusters and their growth and 
shrinkage. The cluster evolution is represented by the time dependent develop- 
ment of the distribution N = {N,, . . . , NN}. 

In order to discuss this evolution we suppose the following assumptions: 
i) The growth and shrinkage of a cluster is due only to an attachment or 

evaporation of monomers. In terms of chemical kinetics this process can be 
represented by the stochastic reaction 

A,, +A,&A,+, . 
w- (3.1) 

W+ and w- are the transition probabilities per time unit for the stochastic 
reaction in the given direction. They will be specified afterwards. 

ii) Interactions between clusters, like coagulations or collisions between two 
or more clusters are not taken into account. Also a break of a cluster into 
pieces is not considered. The probabilities of these events should be negligible 
in comparison with the probabilities of the reactions (3.1). 

Every possible configuration N of particles in clusters is found only with a 
certain probability defined by 

P(N, t) = P(N,, N,, N3. . . NN, t) . 

Due to the interactions assumed in eq. (3.1) P(N, t) changes with time. This 
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can be described by a master equation. Since N is a vector of discrete states the 
master equation has the form 

aP(N, 0 
at 

= 2 {w(N) N’)P(N’, t) - w(N’ 1 WV', t)> . 

N' 
(3.2) 

The quantities w(N’ ) N) are the transition probabilities per time unit for the 
transition from N to N’. N’ specifies those distributions which are attainable 
from the assumed distribution N via the reaction (3.1). 

3.2. Equilibrium probability distribution 

The stationary solution of the master equation requires that aP(N, t) Iat = 0. 
From this condition we find C,. J(NIN’)=O with J(N\N’)= 
w(N 1 N’)P(N’, t) - w(N’ (N)P(N, t) being the probability flux between N’ and 
N. For finite systems the equilibrium condition is given by the more restrictive 
condition of detailed balance. It means J(N ) N’) = 0 resulting in 

W(N 1 N’) P’(N’) = W(N' I N) P’(N) . (3.3) 

P’(N) is the equilibrium probability distribution in the space of all possible 
particle configurations. In the following it is derived from microscopic conside- 
rations. 

Let u(ql..*qNpl** * pN) be the probability distribution for the N particles 
in the phase space of the space and momentum coordinates of all particles. In 
thermodynamic equilibrium the following relation is valid: 

U0(4*..‘PIv)’ 
1 

Z(T, V, N) 

Wq,.- . pN) is the Hamiltonian of the N particles as used already in eq. (2.8). 
Z( T, V, N) is the canonical partition function of the N particles in an atomic 
picture. For the given constraints Z(T, V, N) depends on the total particle 
number N and the thermodynamic constraints only and gives the normaliza- 
tion. We now define the probability of the equilibrium distribution P’(N) by an 

=P -$ Wq, ’ . ’ qN PI * * 'PN,) . (3.4) 

integral of u”( q1 . . * pN) over the subspace C(N): 

P’(N)= 1 UO(ql...pN)dq,...dp,. 

C(N) 

Use of eqs. (2.8) and (3.4) allows us to introduce the canonical partition 
function for the assumed cluster distribution Z(T, V, N) into eq. (3.5). We 

(35) 
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receive finally with respect to eq. (2.11) the probability of the equilibrium 
distribution in the form 

P’(N) = 
Z(T, V, N) 1 

Z(T, V, N) = Z(T, V, N) exp I 
-&TF(T,V,N,... 

B 
(3.6) 

The equilibrium cluster distribution can be found from the minimum condition 
aP”(N)ldN~ = 0. We find 

($Ai)=($A:)‘exp{-&], n=2 ,..., N, (3.7) 

where N, = N - Crzi=, nN,,. 
Due to this boundary condition eq. (3.7) is a system of equations which have 

to be solved simultaneously. Using the denotation of the chemical potential p,, 
(eq. 2.19) the equilibrium solution can be written in the form of a mass action 
law”): j.~jl = n&. 

3.3. Transition probabilities 

For a discussion of the stochastic evolution of the cluster distribution we 
need now proper transition probabilities to describe the attachment or evapo- 
ration of monomers to/from clusters. With respect to the condition of detailed 
balance in the final equilibrium state only one kinetic assumption is used which 
considers the reaction (3.1). The transition probability for the opposite process 
can be determined by means of the free energy as follows: 

w(NjN’)= w(N’[N)exp($T [F(T,V,N’)- F(T,V,N)]{. (3.9) 

We assume that the probability of the attachment of a monomer to a cluster of 
size n increases with the surface of the cluster and with the density of free 
particles and the number of clusters of size n. In this way we get for the special 
process of attachment: 

w(N’IN)=w(N,-l...N,-lN,+,+l...N,JN,...N,N,+,...N,) 

= w,f(N, N,,) = cxn2’“N,N,IV, N,=N- 5 nN,,. (3.10) 
n=2 

a is a constant which scales the time. In this paper a is set equal to one. In 
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general for the value of the parameter CY one has to consider the specific 
properties of the surface, like surface tension, composition of the surface and 
the sticking coefficient. 

Previous investigations on a stochastic description of the nucleation 
process 14-16) presume an independent formation and growth of clusters. In the 
case of isobaric constraints the description is reduced to a linear random walk 
process for the size of a single cluster. But in isochoric finite systems the 
probability P(N, t) does not factorize because the total number of particles is 
conserved and the growth of clusters of different sizes are correlated by the 
vapour pressure. 

We note that in the case of creating a dimer the transition probability differs 
slightly. In this case it reads 

w(N,-2N,+l...N,jN,N,...N,)=w;(N,)=aN,(N,-1)/V. 
(3.11) 

The transition probability per time unit for the evaporation of one particle 
from a cluster of size II is received from eq. (3.9) in the form 

w(N’ (N) = w(N, + 1. a. N,_, + 1 N,, - 1. * * NN 1 N, * *. N,_, N, . . . IV,,,) 

= w,(N,) = CUI*‘~N, 

The transition probability of evaporation is proportional to the surface area 
and the number of clusters of size IZ again. Neglecting the term (n - 1 ln)13’6 
which is nearly equal to one and using the ansatz for f, (eq. 2.13) valid for large 
clusters, the transition probability (eq. 3.12) can be written in the form 

P’(T) 
w,(N,) = at~*'~N, k,T exp (3.13) 

Let us note that the transition probability of evaporation in our model is not 
determined by the whole cluster distribution as is the case for the transition 
probability of attachment. It depends only on the conditions of the cluster 
itself. 

3.4. Results of computer simulations 

We now investigate the stochastic evolution of the cluster distribution in the 
finite system by means of computer simulations. In order to solve the master 
equation we use the stochastic dynamics technique17,‘s). 

In order to simulate the whole process of formation and growth of clusters 
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we choose a constant overall particle number N = 150. The thermodynamic 

constraints are represented in terms of the initial supersaturation y, = 

Nk,TIp’(T)V. With respect to the constant value of N an increase of y. means 

a decrease of the temperature T or a decrease of the system volume V. 
The specific properties of the vapour and the liquid phase are obtained for 

ethanol. For a temperature T = 290 K the constants A (eq. 2.14) and B (eq. 

2.15) representing these properties are held as: A = 19.08k,T and B = 
5.32k, T. 

The stochastic simulation starts with the restriction that in the initial state 

only free particles exist in the system. The first possible reaction is the 

formation of a dimer. This dimer has a certain lifetime which is determined 

randomly with respect to the transition probabilities. For the second reaction 

three possibilities exist: the dimer grows up to a trimer, or the dimer splits, or a 

second dimer will be created. One of these reactions is randomly chosen 

corresponding to the values of the possible transition probabilities. With the 

obtained new particle configuration the evolution of the cluster distribution will 

be continued. 

The results of the stochastic cluster evolution are presented in fig. 1 obtained 

from a single computer run. It gives five snapshots of the particle configuration 

for different moments. Figs. 2 and 3 shall accompany the discussion of the 

phase transition. They present the time dependent evolution of the total 

number of clusters (n k 2) and of the total number of bound particles in 

clusters, respectively. 

We can distinguish between three different stages of the phase transition in 

finite systems: 

(i) First a period of predominant formation of undercritical clusters occurs 

where a distribution of free particles, dimers, trimers have been established in 

a very short time (after about 500 reactive collisions) (compare fig. la). Both 

the number of clusters and the number of bound particles in clusters increase 

rapidly. 

(ii) After a certain time lag some of these small clusters begin to grow up 

stochastically to a supercritical size (compare fig. lb, c). In this period a 

favoured cluster growth is obtained. The nucleation period has been finished 

and the number of clusters is already decreasing. The number of bound 

particles increases again. 

(iii) In the last but longest period the number of clusters and the number of 

bound particles are nearly constant, but fluctuate because always new dimers 

are created or disappear. During this period one of the larger clusters grows to 

its final stable state. This cluster succeeds in a competition process, that means 

its further growth occurs at the expense of the smaller clusters which have to 

disappear. This process is also called “Ostwald ripening” characterized by the 
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Fig. 1. Stochastic evolution of the cluster distribution. Presented is the number nN, versus cluster 
size n for different time moments (in time units). R gives the number of reactive collisions during 
the given time r, y denotes the recent supersaturation in the system. Initial supersaturation 
y, = 12.5. 

(a) R = 5 x 10’ , t= 0.368, y = 8.35 ; 
(b) R = 1 x 10’) t= 0.719, y = 8.15 ; 
(c) R = 2 x lo3 , t= 1.472, y = 1.30 ; 
(d) R = 5 x 10’1 t= 6.750, y=3.17; 
(e) R = 1 x 104, t = 27.250, y = 2.17. 

restoration of the already bound particles from smaller to larger clusters caused 
by the re-evaporation of the small clusters (compare fig. Id, e). 

The final state (fig. le) is given by one large cluster surrounded by a 
distribution mainly of free particles and small clusters. This state is in accord- 
ance with the thermodynamic equilibrium of the two coexisting phases. The 
stable cluster size is determined by the thermodynamic constraints of the finite 
system only. 

We note again that the process of formation of critical clusters - (i) - can be 
understood only by consideration of fluctuations in the system, while the 
growth of supercritical clusters and the Ostwald ripening period can be 
described by deterministic equations374). 

The time dependence of the supersaturation in the system presented in fig. 4 
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Fig. 2. Stochastic evolution of the number of clusters N,, = C:=2 N,, versus time (in time units). 

Initial supersaturation y. = 12.5. 

15 

- 
25 t 

Fig. 3. Stochastic evolution of the number of bound particles in clusters M = C,“=, nN,, versus time 
(in time units). Initial supersaturation yO = 12.5. 
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I , 

1 5 10 15 20 25 t 

Fig. 4. Stochastic evolution of the reduced supersaturation y(t)lyo versus time (in time units). 
Initial supersaturation: (a) y, = 7.5; (b) y, = 12.5. 

confirms the given results. The actual supersaturation y(t) gives a measure of 
the distance from the equilibrium state. It starts with the value of the initial 
supersaturation y, and is reduced first in a very short time due to the 
nucleation process and then it decreases because of the depletion of the vapour 
when the overcritical clusters grow. In the last period the pressure in the 
system is nearly constant and changes stochastically. We note that the larger 
initial supersaturation decreases more rapidly. 

4. Evolution of the mean cluster distribution 

4.1. Fokker-Planck equation 

In order to get a deefier insight into the time dependence of the phase 
transition in finite systems, we complete the given results of the stochastic 
evolution with a discussion of the mean cluster distribution. 

The mean number of clusters is received from the first moment of the 
probability P(N, t): 

(4.1) 

{Ni} means every possible cluster distribution which fulfills the restrictive 
condition N = const. 

By means of the master equation (3.2) the time dependence of the mean 
values (N,(t)) can be expressed in the following form”): 

$ (Nn(t)) =CAjr\l,(Wj(N’IN)). i 
(4.2) 
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AiN, gives the value of the change of N,, for every possible stochastic reaction j 
where the IV, participate. ( wj(N’ IN)) denotes the averaged value of the 
related transition probability for the reaction j. Using the transition prob- 
abilities (3.10), (3.12) we obtain from eq. (4.2) the following system of 
equations: 

$(N,)=(-w,-w,:+WR+,+W:~,), n=2,...,N, 

-$ (N,) = (-2;, +2W, - 5 (W; - “‘;+I)) 
,=2 

(4.3) 

=-(6 - w; + g <w: - wi,,>) . 

Now we make use of a Taylor expansion for the transition probabilities w,,, 
and w,‘_,. Neglecting terms of higher than the second derivative we get the 
following differential equation: 

$ (N,(4) = -& (w,‘(N,N,) - w,(N,)) 

(4.4) 

Using the transition probabilities (3.10), (3.13) with the approximation 

(N, NJ = (N,)(K) we find the following Fokker-Planck equation: 

with the quantities: 

and 

an=; (r~)*‘~ 
[ 

(4) P’ F+mexp 
B l 

; eT (n> -l/3}] . 

(4.5) 

(4.6) 

(4.7) 

The time dependent change of the mean number of clusters is now described in 
terms of a differential equation. The change of the mean number of free 
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particles must be considered with respect to the conservation of the overall 
particle number N: 

(43) 

The quantity u, (eq. 4.6) is interpreted as the mean velocity of the determinis- 
tic cluster growth and shrinkage and will be discussed later. a, (eq. 4.7) is a 
diffusion parameter indicating the measure of the fluctuations. 

The time dependent evolution of the mean cluster distribution is sketched in 
fig. 5. For the initial state which consists of only free particles (N,(t = 0)) is a 

delta function in the state n = 1. The further evolution of (N,(t)) can be 
described by means of two time scales’9220): 

i) In a shorter, quasistationary time scale the initial delta function relaxes 
into a Poissonian distribution around the nearest stable state. This state is 
given by the vapour phase being a metastable one. The metastable cluster 
distribution consisting of only free particles and small clusters exists in the 
supersaturated state over a certain time. 

ii) During a larger, stationary time scale overcritical fluctuations become 
important. The metastable state is left and the mean cluster distribution will be 
broadened. Near the second stable state (drop) another maximum of the 
distribution is built up. Thus the phase transition occurs in the stationary time 
scale, which means stochastic behaviour. 

At the end of the phase transition we find instead of the metastable 
unimodal mean cluster distribution a bimodal distribution which describes the 
coexistence of a stable cluster and the vapour by means of two maxima of 
(N,(t)). The final state is asymptotically reached. In this case the maxima of 
(N,(t)) coincide with the thermodynamic stable states of the deterministic 
picture, while the minimum is related to the instable state. 

Chkl,. 
i5. n n n n 

t=o tst’ t,t t-s- 
Fig. 5. Sketch of the mean cluster distribution for different moments. t’ denotes the mean first 
passage time to reach a state where over-critical clusters (n > n,,) exist. 
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Fig. 6. Frequency of finding clusters with size n during a given time t (in time units) for a single 

run. R denotes the number of reactive collisions during the given time. 
(a) R=5.0x 10’. I= 0.368; 

(b) R = 2.5 x 10’ . t= 1.931 ; 
(c) R = 5.0 x 10’ , I = 6.752 ; 
(d) R = 1.0 x 10’ , t = 27.250; 

(e) R = 3.2 x 10’ , r = 129.371. 
Initial supersaturation y,, = 12.5; vapour: ethanol, N = 150, T= 290 K. 
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The discussion of the mean cluster distribution is illustrated by means of 
computer simulations. Fig. 6 presents the simulation of the distribution ob- 
tained only from a single run. Averaging over a big number of independent 
runs this frequency distribution converges into the probability distribution. In 
fig. 6a it is to be seen that for less than 0.5 time units the metastable state is not 
left. Later on the frequency of finding larger clusters gains importance. During 
the phase transition a broad cluster distribution is obtained. When the stable 
cluster size is reached the frequency is confined near the second stable state 
and for large times we find a clear bimodal cluster distribution. The fluctua- 
tions of the stable cluster size can be found easy from fig. 6e. 

4.2. Simulations of the mean first passage times 

It has been shown that the phase transition can be described by means of two 
time scales. In order to characterize these time scales the concept of mean first 
passage time can be used. 

The mean time of first passage into the critical state gives a measure for the 
quasistationary time scale. It approximates the lifetime of the metastable 
cluster distribution. 

With the formation of the first critical cluster the probability of the phase 
transition increases. The minimum time to establish the bimodal mean cluster 
distribution can be characterized by the mean time of first passage into the 
stable state. Therefore it is a measure for the stationary time scale when the 
phase transition occurs. 

Table I gives some values for the mean times of first passage into the critical 
and the stable state averaged over 20 independent computer runs. With an 
increasing initial supersaturation the transition times are shorter, but they 
fluctuate very strongly. 

Analytic results for the mean first passage time are obtained only in the case 
of an one-dimensional random walk process, see ref. 21. 

TABLE I 
Mean first passage time (in time units) from the initial 

state into the critical state (r,,) and into the stable state 

(T,,) averaged over 20 runs. y, denotes the initial super- 

saturation, ncr and n,, are the critical and the stable 

cluster sizes for the given thermodynamic constraints, cp 

denotes the standard deviation; vapour: ethanol, N = 150, 

T=290K. 

YO n cr nsr Tcr * ‘p,r 7s * ‘P,t 

7.5 13 108 3.03 k 2.64 21.24 k 11.96 

10.0 10 119 0.81 t 0.43 11.30 * 3.02 

12.5 7 125 0.29 r 0.18 9.23 f 1.62 
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4.3. Deterministic cluster growth 

The Fokker-Planck equation (4.5) allows a discussion of the deterministic 

cluster evolution in the limiting case of vanishing fluctuations. In this case the 

formation of new clusters or the disappearing of clusters is not taken into 

account and the deterministic kinetics can be written in the form of a continuity 

equation: 

(N,(t)) + div( N,,(t)ti) = 0. (4.9) 

ri denotes the deterministic velocity for the growth or shrinkage of the cluster 

of size IZ as already given in eq. (4.6). Use of power expansions in eq. (4.6) 

leads to the deterministic kinetics in the form: 

where (n,,) is the critical cluster size given by*‘) 

(4.10) 

(4.11) 

The critical cluster size acts as a selection value. Only clusters with an 

overcritical size are able to grow, undercritical clusters have to disappear again. 

The mean critical cluster size depends on time because the number of free 

particles (A’, ) reduces with the formation and growth of clusters. That is the 

reason why the critical cluster size possesses information on the recent state of 

the phase transition. Fig. 7 presents the time dependence of the critical cluster 

I , 
I 

c 

1 5 10 15 t 

Fig. 7. Stochastic evolution of the critical cluster size (in nm) versus time (in time units). Initial 

supersaturation: (a) y, = 7.5; (b) y,, = 12.5; vapour: ethanol, N = 150, T = 290 K. 
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size for the earlier stages of the phase transition as has been obtained from the 
stochastic simulations. In the initial state of only free particles IZ,, has its 
smallest value given by”): 

(~l,,(t = 0))“3 = 3 eT (ln y,)-’ . (4.12) 

It increases during the phase transition caused by the depletion of the vapour. 
The largest value (not shown in fig. 7) is reached if the pressure in the system is 
given by the saturation pressure. The time dependence of the critical cluster 
size is a typical finite system effect. 
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